

...yes.

An explosive mystery solved by Ryan White, (a grad student here at Macquarie)

...I'll get to it.

An explosive mystery delayed to you by Ryan White,

(a grad student here at Macquarie)

What is a supernova?

What is a Type Ia supernova?

If they're nearby

If they're across the Galaxy

If they're in a different galaxy

If they're nearby

If they're far away

 Supernovae are very common when we zoom out to look at the Universe!

- Light from supernovae get 'redshifted'
 - Blue goes to green
 - Green to yellow
 - Yellow to red...

• Light from supernovae get 'redshifted'

Blue goes to green

- Green to yellow
- Yellow to red...

Colour of light we see

- Light from supernovae get 'redshifted'
 - Blue goes to green
 - Green to yellow
 - Yellow to red...

- Light from supernovae get 'redshifted'
 - Blue goes to green
 - Green to yellow
 - Yellow to red...

• Light from supernovae get 'redshifted'

 This is because the Universe is expanding, and further away stuff is moving away faster

• But light always wants to go at the same speed... so it loses 'energy' so that it can maintain its speed

- When we look reeeeeally far out, things seem to slow down
- This is clear when we look at supernova light curves

Time dilation?

- Everyone experiences the same speed of light
- From our perspective, people moving faster need to experience time slower for the equation to balance out

Time dilation?

- Everyone experiences the same speed of light
- From our perspective, people moving faster need to experience time slower for the equation to balance out

We have powerful predictions from Einstein's relativity.

Let's test time dilation... with 1 supernova?

Let's test time dilation... with 3 supernovae?

Let's test time dilation... with 7 supernovae?

Let's test time dilation... with 1500 supernovae!

Let's test time dilation... with 1500 supernovae!

Let's test time dilation... with 1500 supernovae!

What do we see? **Time Dilation** Static Universe Distance

