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A little bit about me

UQ (Brisbane) * Undergrad + Honours at the University of Queensland

* | |]ove some science outreach
e Writer for astrobites

* Always looking for more public outreach e.g. solar
telescopes, talks

* Recently moved to Sydney for MRes+PhD at Macquarie
with Orsola De Marco and Ben Pope

Macquarie Uni
(Sydney!)

& astrobites
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My previous work... at Uni of Queensland

* Worked with Benjamin Pope and Shashank Dholakia to map the
surface of the stars in DI Herculis using its TESS light curve
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My previous work... at Uni of Queensland

* Worked with Tamara Davis to show cosmological time dilation in
~1500 Type la supernovae from the Dark Energy Survey (DES)
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My previous work... at UQ
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My previous work... at UQ
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My previous work... at UQ
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My previous work... at UQ
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My previous work... at UQ
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Exploding stars. show, ve that time slows down in
the'distant Universe! -/- ":*c.,i/‘f
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had to put the places at the end of the paper!

Here's the tl:dr...
B

For almost 100 years we've known that the Universe is expanding. Our models
of' an expandin g Universe predict that a very far away clock will tick slower
than one right next to us — something called cosmological time dilation, In this
paper we treat exploding stars like clocks; using more of these and at
higher distances than ever before to measure time dilation, Using the most
data—driven approach so far, we find... pretty much what we expected! With
the quality of the data from our collaboration, the Dark Ener gy Survey, this
is the most precise detection of cosmological time dilation yet.

Here's: the back ground:
A~

What we're looking for in the
Cosmoloaical time dilation is.uet . .. "1 1 Mo l.‘?J B l

ryanwhitel.github.io/time-dilation.html



My previous work... at Swinburne

* Investigated the AGN channel of
binary black hole mergers with Simon
Stevenson

* Integrating numerical relativity and
disk models into the REBOUND code

* This channel could explain very
massive (hierarchical) mergers such
as GW190521




My previous work... at CSIRO

* Developed a new method to
search for Long Period Radio
Transients with Andrew Zic

* Transients are traditionally
looked for by searching pixel by
pixel in a set of images

* With radio interferometric
data, we can save computation
(and time) by directly folding
visibilities at trial periods
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My previous work... at CSIRO
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Colliding Wind Binaries
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Colliding Wind Binaries

* Are the dominant influences on
their environment,

* made up a large part of the
Universe’s early carbon content,

* allow us to peer into binary
stellar evolution and the
evolution of massive stars,

* and just look unreasonably
cool.

Apep with ESO’s VLT
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A broad overview of massive stellar evolution
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Wolf-Rayet stars . -~ . . . .. -

* End-of-life phase of the
most massive stars

* Very short lived and rare""-"' o4

* Extremely high mass Iossk
rates and fast winds .
* ~1075-10"* M /yr
* 500-3000 km/s

* Ib/c SNe progenitors

WR 124 with NASA/ESA’s JWST 18



Wolf-Rayet stars
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b.narg
A broad overview of massiveYstellar evolution
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Wolf-Rayet Colliding Wind Binaries _ g—~ «
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Wolf-Rayet Colliding Wind Binaries S s
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Wolf-Rayet Colliding Wind Binaries

* Intense dust formation takes
place in systems with WC stars

* Forms in a hollow cone tracing the
shocked wind

* This occurs far enough Wind Shock
‘downstream’ of the shock once the

wind is mixed and cooled
* The dust expands away from the
stars

* The orbital motion of the binary
wraps this dust into a spiral

Nucleation Distance
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Modelling using geometry

{ Nucleation Distance

* Model the orbits of the two stars L o omy s

A /

* The wind-wind shock enshrouds
the star with the weaker wind

* Dust nucleation occurs on the )
surface of the conical shock \*

* At each point in time, we =
approximate this dust nucleation - -
as a ring of particles on the
surface Wolf—Rayet Star

0/8/WKR Star
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Modelling using geometry

These are the same
rings as before!

Just now we're sweeping
rings out as the binary orbits
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Wolf-Rayet Colliding Wind Binaries
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Wolf-Rayet Colliding Wind Binaries
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Wolf-Rayet Colliding Wind Binaries

' J
‘

WR 104/Keck WR 98a/Keck WR 112/Subaru WR 48a/Gemini

. J '



WR 140

WR 140/Keck

WR140
1999 Jul
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WR 140

WR 140/Keck

WR140
1999 Jul

2

WR 140/JWST
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WR 140

2022

WR 140/JWST, Lieb et al 2025
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NIRC2
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¢ = 0.592

WR 140/Keck, Han et al 2022
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WR 140

S

Observer view

Han et al 2022

WR Orbit

O Star Orbit
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Top-down view
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Apep
* The only dusty WR+WR CWB

* The longest period dusty CWB

* Potentially a tertiary O
supergiant, making the system
a hierarchical triple

* Could harbour a LGRB
progenitor

Apep with ESO’s VLT
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Apep
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Apep
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Standard Apep Model

VLT Image
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Apep
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e
Standard Apep Model /‘ Tertiary Shock Geometry
- ~N
> ' Apep Model incl.
VLT Image /‘ Tertiary Shock
~
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¢ = 0.50
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Apep

* WR+WR orbital period is ~235
years

* About 8x longer than the next
longest period dusty CWB

* A confirmed hierarchical triple

* The orbit of the inner WR+WR
binary has certainly been
affected by the O star

* No evidence of wind anisotropy
In plume geometry

* which doesn’t necessarily rule
out an anisotropic wind

¥
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In summary...

* | can’t get away from binary interactions

* Wolf-Rayet Colliding wind binaries, the rare binary interactions of
pre-supernova massive stars, can be simply modelled with geometry

* |’ve developed a new and fast code to do this, with handy features like a GUI
velocity partitioning, and more physics than ever (ask me about it!)

e \We have a book chapter on WR-CWBs (QR code) to learn more

* The dust cavity in the Apep nebula confirms a hierarchical triple
* New JWS imagery was vital for this and the updated orbit

'n_-..

' El.- -,-.I-'

arXiv:2412.12534




Normalised Flux
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Apep’s wind anisotropy
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Apep’s wind anisotropy
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Apep’s wind anisotropy

Normalised Flux

Velocity (x1000 kms™!)

2100 + 3500km/s winds

~860km/s nebular expansion
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Apep’s wind anisotropy Observr 4
\\ \ )

* Rapid rotation leads to a fast //
and sparse wind at the poles,

and a slow and dense wind at \ / i
the equator \\ - _//

Wind Contributing
to Dust Nebula

* \We can observe a fast
spectroscopic wind
simultaneous with a slow
nebula expansion




Apep’s wind anisotropy

* We emulate anisotropy by changing open angle and expansion
speed as a function of true anomaly

* This is only relevant when the spin and orbit are misaligned

Original Anisotropic
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xenomorph — Our new geometric code
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xenomorph — Our new geometric code
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xenomorph — Our new geometric code

WR 140 from xenomorph WR 140 from Williams et al (2009)

* We can (roughly) model the
infrared light curves of CWBs S G
by looking at the brightest | TN
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Change in Magnitude (Am)

xenomorph — Our new geometric code
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